U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 97

1.

Coffin-Siris syndrome 1

Coffin-Siris syndrome (CSS) is classically characterized by aplasia or hypoplasia of the distal phalanx or nail of the fifth and additional digits, developmental or cognitive delay of varying degree, distinctive facial features, hypotonia, hirsutism/hypertrichosis, and sparse scalp hair. Congenital anomalies can include malformations of the cardiac, gastrointestinal, genitourinary, and/or central nervous systems. Other findings commonly include feeding difficulties, slow growth, ophthalmologic abnormalities, and hearing impairment. [from GeneReviews]

MedGen UID:
482831
Concept ID:
C3281201
Disease or Syndrome
2.

Muenke syndrome

Muenke syndrome is defined by the presence of the specific FGFR3 pathogenic variant – c.749C>G – that results in the protein change p.Pro250Arg. Muenke syndrome is characterized by considerable phenotypic variability: features may include coronal synostosis (more often bilateral than unilateral); synostosis of other sutures, all sutures (pan synostosis), or no sutures; or macrocephaly. Bilateral coronal synostosis typically results in brachycephaly (reduced anteroposterior dimension of the skull), although turribrachycephaly (a "tower-shaped" skull) or a cloverleaf skull can be observed. Unilateral coronal synostosis results in anterior plagiocephaly (asymmetry of the skull and face). Other craniofacial findings typically include: temporal bossing; widely spaced eyes, ptosis or proptosis (usually mild); midface retrusion (usually mild); and highly arched palate or cleft lip and palate. Strabismus is common. Other findings can include: hearing loss (in 33%-100% of affected individuals); developmental delay (~33%); epilepsy; intracranial anomalies; intellectual disability; carpal bone and/or tarsal bone fusions; brachydactyly, broad toes, broad thumbs, and/or clinodactyly; and radiographic findings of thimble-like (short and broad) middle phalanges and/or cone-shaped epiphyses. Phenotypic variability is considerable even within the same family. Of note, some individuals who have the p.Pro250Arg pathogenic variant may have no signs of Muenke syndrome on physical or radiographic examination. [from GeneReviews]

MedGen UID:
355217
Concept ID:
C1864436
Disease or Syndrome
3.

Joubert syndrome 1

Classic Joubert syndrome (JS) is characterized by three primary findings: A distinctive cerebellar and brain stem malformation called the molar tooth sign (MTS). Hypotonia. Developmental delays. Often these findings are accompanied by episodic tachypnea or apnea and/or atypical eye movements. In general, the breathing abnormalities improve with age, truncal ataxia develops over time, and acquisition of gross motor milestones is delayed. Cognitive abilities are variable, ranging from severe intellectual disability to normal. Additional findings can include retinal dystrophy, renal disease, ocular colobomas, occipital encephalocele, hepatic fibrosis, polydactyly, oral hamartomas, and endocrine abnormalities. Both intra- and interfamilial variation are seen. [from GeneReviews]

MedGen UID:
1644883
Concept ID:
C4551568
Disease or Syndrome
4.

FG syndrome 1

MED12-related disorders include the phenotypes of FG syndrome type 1 (FGS1), Lujan syndrome (LS), X-linked Ohdo syndrome (XLOS), Hardikar syndrome (HS), and nonspecific intellectual disability (NSID). FGS1 and LS share the clinical findings of cognitive impairment, hypotonia, and abnormalities of the corpus callosum. FGS1 is further characterized by absolute or relative macrocephaly, tall forehead, downslanted palpebral fissures, small and simple ears, constipation and/or anal anomalies, broad thumbs and halluces, and characteristic behavior. LS is further characterized by large head, tall thin body habitus, long thin face, prominent nasal bridge, high narrow palate, and short philtrum. Carrier females in families with FGS1 and LS are typically unaffected. XLOS is characterized by intellectual disability, blepharophimosis, and facial coarsening. HS has been described in females with cleft lip and/or cleft palate, biliary and liver anomalies, intestinal malrotation, pigmentary retinopathy, and coarctation of the aorta. Developmental and cognitive concerns have not been reported in females with HS. Pathogenic variants in MED12 have been reported in an increasing number of males and females with NSID, with affected individuals often having clinical features identified in other MED12-related disorders. [from GeneReviews]

MedGen UID:
1768809
Concept ID:
C5399762
Disease or Syndrome
5.

Saethre-Chotzen syndrome

Classic Saethre-Chotzen syndrome (SCS) is characterized by coronal synostosis (unilateral or bilateral), facial asymmetry (particularly in individuals with unicoronal synostosis), strabismus, ptosis, and characteristic appearance of the ear (small pinna with a prominent superior and/or inferior crus). Syndactyly of digits two and three of the hand is variably present. Cognitive development is usually normal, although those with a large genomic deletion are at an increased risk for intellectual challenges. Less common manifestations of SCS include other skeletal findings (parietal foramina, vertebral segmentation defects, radioulnar synostosis, maxillary hypoplasia, ocular hypertelorism, hallux valgus, duplicated or curved distal hallux), hypertelorism, palatal anomalies, obstructive sleep apnea, increased intracranial pressure, short stature, and congenital heart malformations. [from GeneReviews]

MedGen UID:
64221
Concept ID:
C0175699
Disease or Syndrome
6.

Mitochondrial DNA depletion syndrome 13

FBXL4-related encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome is a multi-system disorder characterized primarily by congenital or early-onset lactic acidosis and growth failure, feeding difficulty, hypotonia, and developmental delay. Other neurologic manifestations can include seizures, movement disorders, ataxia, autonomic dysfunction, and stroke-like episodes. All affected individuals alive at the time they were reported (median age: 3.5 years) demonstrated significant developmental delay. Other findings can involve the heart (hypertrophic cardiomyopathy, congenital heart malformations, arrhythmias), liver (mildly elevated transaminases), eyes (cataract, strabismus, nystagmus, optic atrophy), hearing (sensorineural hearing loss), and bone marrow (neutropenia, lymphopenia). Survival varies; the median age of reported deaths was two years (range 2 days – 75 months), although surviving individuals as old as 36 years have been reported. To date FBXL4-related mtDNA depletion syndrome has been reported in 50 individuals. [from GeneReviews]

MedGen UID:
815922
Concept ID:
C3809592
Disease or Syndrome
7.

Cranioectodermal dysplasia 2

Cranioectodermal dysplasia (CED) is a ciliopathy with skeletal involvement (narrow thorax, shortened proximal limbs, syndactyly, polydactyly, brachydactyly), ectodermal features (widely spaced hypoplastic teeth, hypodontia, sparse hair, skin laxity, abnormal nails), joint laxity, growth deficiency, and characteristic facial features (frontal bossing, low-set simple ears, high forehead, telecanthus, epicanthal folds, full cheeks, everted lower lip). Most affected children develop nephronophthisis that often leads to end-stage kidney disease in infancy or childhood, a major cause of morbidity and mortality. Hepatic fibrosis and retinal dystrophy are also observed. Dolichocephaly, often secondary to sagittal craniosynostosis, is a primary manifestation that distinguishes CED from most other ciliopathies. Brain malformations and developmental delay may also occur. [from GeneReviews]

MedGen UID:
462224
Concept ID:
C3150874
Disease or Syndrome
8.

Langer-Giedion syndrome

Trichorhinophalangeal syndrome (TRPS) comprises TRPS I (caused by a heterozygous pathogenic variant in TRPS1) and TRPS II (caused by contiguous gene deletion of TRPS1, RAD21, and EXT1). Both types of TRPS are characterized by distinctive facial features; ectodermal features (fine, sparse, depigmented, and slow growing hair; dystrophic nails; and small breasts); and skeletal findings (short stature; short feet; brachydactyly with ulnar or radial deviation of the fingers; and early, marked hip dysplasia). TRPS II is characterized by multiple osteochondromas (typically first observed clinically on the scapulae and around the elbows and knees between ages 1 month and 6 years) and an increased risk of mild-to-moderate intellectual disability. [from GeneReviews]

MedGen UID:
6009
Concept ID:
C0023003
Disease or Syndrome
9.

Cornelia de Lange syndrome 3

Cornelia de Lange syndrome (CdLS) encompasses a spectrum of findings from mild to severe. Severe (classic) CdLS is characterized by distinctive facial features, growth restriction (prenatal onset; <5th centile throughout life), hypertrichosis, and upper-limb reduction defects that range from subtle phalangeal abnormalities to oligodactyly (missing digits). Craniofacial features include synophrys, highly arched and/or thick eyebrows, long eyelashes, short nasal bridge with anteverted nares, small widely spaced teeth, and microcephaly. Individuals with a milder phenotype have less severe growth, cognitive, and limb involvement, but often have facial features consistent with CdLS. Across the CdLS spectrum IQ ranges from below 30 to 102 (mean: 53). Many individuals demonstrate autistic and self-destructive tendencies. Other frequent findings include cardiac septal defects, gastrointestinal dysfunction, hearing loss, myopia, and cryptorchidism or hypoplastic genitalia. [from GeneReviews]

MedGen UID:
339902
Concept ID:
C1853099
Disease or Syndrome
10.

Developmental and epileptic encephalopathy, 1

Developmental and epileptic encephalopathy-1 (DEE1) is a severe form of epilepsy characterized by frequent tonic seizures or spasms beginning in infancy with a specific EEG finding of suppression-burst patterns, characterized by high-voltage bursts alternating with almost flat suppression phases. Approximately 75% of DEE1 patients progress to tonic spasms with clustering, arrest of psychomotor development, and hypsarrhythmia on EEG (Kato et al., 2007). DEE1 is part of a phenotypic spectrum of disorders caused by mutation in the ARX gene comprising a nearly continuous series of developmental disorders ranging from lissencephaly (LISX2; 300215) to Proud syndrome (300004) to infantile spasms without brain malformations (DEE) to syndromic (309510) and nonsyndromic (300419) mental retardation. Although males with ARX mutations are often more severely affected, female mutation carriers may also be affected (Kato et al., 2004; Wallerstein et al., 2008). Reviews Deprez et al. (2009) reviewed the genetics of epilepsy syndromes starting in the first year of life and included a diagnostic algorithm. Genetic Heterogeneity of Developmental and Epileptic Encephalopathy Also see DEE2 (300672), caused by mutation in the CDKL5 gene (300203); DEE3 (609304), caused by mutation in the SLC25A22 gene (609302); DEE4 (612164), caused by mutation in the STXBP1 gene (602926); DEE5 (613477), caused by mutation in the SPTAN1 gene (182810); DEE6A (607208), also known as Dravet syndrome, caused by mutation in the SCN1A gene (182389); DEE6B (619317), also caused by mutation in the SCN1A gene; DEE7 (613720), caused by mutation in the KCNQ2 gene (602235); DEE8 (300607), caused by mutation in the ARHGEF9 gene (300429); DEE9 (300088), caused by mutation in the PCDH19 gene (300460); DEE10 (613402), caused by mutation in the PNKP gene (605610); DEE11 (613721), caused by mutation in the SCN2A gene (182390); DEE12 (613722), caused by mutation in the PLCB1 gene (607120); DEE13 (614558), caused by mutation in the SCN8A gene (600702); DEE14 (614959), caused by mutation in the KCNT1 gene (608167); DEE15 (615006), caused by mutation in the ST3GAL3 gene (606494); DEE16 (615338), caused by mutation in the TBC1D24 gene (613577); DEE17 (615473), caused by mutation in the GNAO1 gene (139311); DEE18 (615476), caused by mutation in the SZT2 gene (615463); DEE19 (615744), caused by mutation in the GABRA1 gene (137160); DEE20 (300868), caused by mutation in the PIGA gene (311770); DEE21 (615833), caused by mutation in the NECAP1 gene (611623); DEE22 (300896), caused by mutation in the SLC35A2 gene (314375); DEE23 (615859), caused by mutation in the DOCK7 gene (615730); DEE24 (615871), caused by mutation in the HCN1 gene (602780); DEE25 (615905), caused by mutation in the SLC13A5 gene (608305); DEE26 (616056), caused by mutation in the KCNB1 gene (600397); DEE27 (616139), caused by mutation in the GRIN2B gene (138252); DEE28 (616211), caused by mutation in the WWOX gene (605131); DEE29 (616339), caused by mutation in the AARS gene (601065); DEE30 (616341), caused by mutation in the SIK1 gene (605705); DEE31A (616346) and DEE31B (620352), caused by mutation in the DNM1 gene (602377); DEE32 (616366), caused by mutation in the KCNA2 gene (176262); DEE33 (616409), caused by mutation in the EEF1A2 gene (602959); DEE34 (616645), caused by mutation in the SLC12A5 gene (606726); DEE35 (616647), caused by mutation in the ITPA gene (147520); DEE36 (300884), caused by mutation in the ALG13 gene (300776); DEE37 (616981), caused by mutation in the FRRS1L gene (604574); DEE38 (617020), caused by mutation in the ARV1 gene (611647); DEE39 (612949), caused by mutation in the SLC25A12 gene (603667); DEE40 (617065), caused by mutation in the GUF1 gene (617064); DEE41 (617105), caused by mutation in the SLC1A2 gene (600300); DEE42 (617106), caused by mutation in the CACNA1A gene (601011); DEE43 (617113), caused by mutation in the GABRB3 gene (137192); DEE44 (617132), caused by mutation in the UBA5 gene (610552); DEE45 (617153), caused by mutation in the GABRB1 gene (137190); DEE46 (617162), caused by mutation in the GRIN2D gene (602717); DEE47 (617166), caused by mutation in the FGF12 gene (601513); DEE48 (617276), caused by mutation in the AP3B2 gene (602166); DEE49 (617281), caused by mutation in the DENND5A gene (617278); DEE50 (616457) caused by mutation in the CAD gene (114010); DEE51 (617339), caused by mutation in the MDH2 gene (154100); DEE52 (617350), caused by mutation in the SCN1B gene (600235); DEE53 (617389), caused by mutation in the SYNJ1 gene (604297); DEE54 (617391), caused by mutation in the HNRNPU gene (602869); DEE55 (617599), caused by mutation in the PIGP gene (605938); DEE56 (617665), caused by mutation in the YWHAG gene (605356); DEE57 (617771), caused by mutation in the KCNT2 gene (610044); DEE58 (617830), caused by mutation in the NTRK2 gene (600456); DEE59 (617904), caused by mutation in the GABBR2 gene (607340); DEE60 (617929), caused by mutation in the CNPY3 gene (610774); DEE61 (617933), caused by mutation in the ADAM22 gene (603709); DEE62 (617938), caused by mutation in the SCN3A gene (182391); DEE63 (617976), caused by mutation in the CPLX1 gene (605032); DEE64 (618004), caused by mutation in the RHOBTB2 gene (607352); DEE65 (618008), caused by mutation in the CYFIP2 gene (606323); DEE66 (618067), caused by mutation in the PACS2 gene (610423); DEE67 (618141), caused by mutation in the CUX2 gene (610648); DEE68 (618201), caused by mutation in the TRAK1 gene (608112); DEE69 (618285), caused by mutation in the CACNA1E gene (601013); DEE70 (618298) caused by mutation in the PHACTR1 gene (608723); DEE71 (618328), caused by mutation in the GLS gene (138280); DEE72 (618374), caused by mutation in the NEUROD2 gene (601725); DEE73 (618379), caused by mutation in the RNF13 gene (609247); DEE74 (618396), caused by mutation in the GABRG2 gene (137164); DEE75 (618437), caused by mutation in the PARS2 gene (612036); DEE76 (618468), caused by mutation in the ACTL6B gene (612458); DEE77 (618548), caused by mutation in the PIGQ gene (605754); DEE78 (618557), caused by mutation in the GABRA2 gene (137140); DEE79 (618559), caused by mutation in the GABRA5 gene (137142); DEE80 (618580), caused by mutation in the PIGB gene (604122); DEE81 (618663), caused by mutation in the DMXL2 gene (612186); DEE82 (618721), caused by mutation in the GOT2 gene (138150); DEE83 (618744), caused by mutation in the UGP2 gene (191760); DEE84 (618792), caused by mutation in the UGDH gene (603370); DEE85 (301044), caused by mutation in the SMC1A gene (300040); DEE86 (618910), caused by mutation in the DALRD3 gene (618904); DEE87 (618916), caused by mutation in the CDK19 gene (614720); DEE88 (618959), caused by mutation in the MDH1 gene (152400); DEE89 (619124), caused by mutation in the GAD1 gene (605363); DEE90 (301058), caused by mutation in the FGF13 gene (300070); DEE91 (617711), caused by mutation in the PPP3CA gene (114105); DEE92 (617829), caused by mutation in the GABRB2 gene (600232); DEE93 (618012), caused by mutation in the ATP6V1A gene (607027); DEE94 (615369), caused by mutation in the CHD2 gene (602119); DEE95 (618143), caused by mutation in the PIGS gene (610271); DEE96 (619340), caused by mutation in the NSF gene (601633); DEE97 (619561), caused by mutation in the iCELF2 gene (602538); DEE98 (619605), caused by mutation in the ATP1A2 gene (182340); DEE99 (619606), caused by mutation in the ATP1A3 gene (182350); DEE100 (619777), caused by mutation in the FBXO28 gene (609100); DEE101 (619814), caused by mutation in the GRIN1 gene (138249); DEE102 (619881), caused by mutation in the SLC38A3 gene (604437); DEE103 (619913), caused by mutation in the KCNC2 gene (176256); DEE104 (619970), caused by mutation in the ATP6V0A1 gene (192130); DEE105 (619983), caused by mutation in the HID1 gene (605752); DEE106 (620028), caused by mutation in the UFSP2 gene (611482); DEE107 (620033), caused by mutation in the NAPB gene ( [from OMIM]

MedGen UID:
483052
Concept ID:
C3463992
Disease or Syndrome
11.

Syndromic X-linked intellectual disability Najm type

CASK disorders include a spectrum of phenotypes in both females and males. Two main types of clinical presentation are seen: Microcephaly with pontine and cerebellar hypoplasia (MICPCH), generally associated with pathogenic loss-of-function variants in CASK. X-linked intellectual disability (XLID) with or without nystagmus, generally associated with hypomorphic CASK pathogenic variants. MICPCH is typically seen in females with moderate-to-severe intellectual disability, progressive microcephaly with or without ophthalmologic anomalies, and sensorineural hearing loss. Most are able to sit independently; 20%-25% attain the ability to walk; language is nearly absent in most. Neurologic features may include axial hypotonia, hypertonia/spasticity of the extremities, and dystonia or other movement disorders. Nearly 40% have seizures by age ten years. Behaviors may include sleep disturbances, hand stereotypies, and self biting. MICPCH in males may occur with or without severe epileptic encephalopathy in addition to severe-to-profound developmental delay. When seizures are present they occur early and may be intractable. In individuals and families with milder (i.e., hypomorphic) pathogenic variants, the clinical phenotype is usually that of XLID with or without nystagmus and additional clinical features. Males have mild-to-severe intellectual disability, with or without nystagmus and other ocular features. Females typically have normal intelligence with some displaying mild-to-severe intellectual disability with or without ocular features. [from GeneReviews]

MedGen UID:
437070
Concept ID:
C2677903
Disease or Syndrome
12.

Intellectual disability, autosomal dominant 13

Complex cortical dysplasia with other brain malformations-13 (CDCBM13) is an autosomal dominant neurodevelopmental disorder characterized by global developmental delay with impaired intellectual development. Brain imaging shows variable neuronal migration defects resulting in cortical malformations, including pachygyria. More variable features include early-onset seizures and dysmorphic features. Some patients may also show signs of peripheral neuropathy, such as abnormal gait, hyporeflexia, and foot deformities (summary by Willemsen et al., 2012 and Poirier et al., 2013). For a discussion of genetic heterogeneity of CDCBM, see CDCBM1 (614039). [from OMIM]

MedGen UID:
482832
Concept ID:
C3281202
Disease or Syndrome
13.

Microphthalmia with brain and digit anomalies

This syndrome has characteristics of anophthalmia or microphthalmia, retinal dystrophy, and/or myopia, associated in some cases with cerebral anomalies. It has been described in two families. Polydactyly may also be present. Linkage analysis allowed identification of mutations in the BMP4 gene, which has already been shown to play a role in eye development. [from SNOMEDCT_US]

MedGen UID:
355268
Concept ID:
C1864689
Disease or Syndrome
14.

Autism, susceptibility to, X-linked 2

Autism, the prototypic pervasive developmental disorder (PDD), is usually apparent by 3 years of age. It is characterized by a triad of limited or absent verbal communication, a lack of reciprocal social interaction or responsiveness, and restricted, stereotypic, and ritualized patterns of interests and behavior (Bailey et al., 1996; Risch et al., 1999). 'Autism spectrum disorder,' sometimes referred to as ASD, is a broader phenotype encompassing the less severe disorders Asperger syndrome (see ASPG1; 608638) and pervasive developmental disorder, not otherwise specified (PDD-NOS). 'Broad autism phenotype' includes individuals with some symptoms of autism, but who do not meet the full criteria for autism or other disorders. Impaired intellectual development coexists in approximately two-thirds of individuals with ASD, except for Asperger syndrome, in which intellectual disability is conspicuously absent (Jones et al., 2008). Genetic studies in autism often include family members with these less stringent diagnoses (Schellenberg et al., 2006). For a discussion of genetic heterogeneity of autism, see 209850. [from OMIM]

MedGen UID:
336964
Concept ID:
C1845539
Finding
15.

Hyperphosphatasia with intellectual disability syndrome 1

Hyperphosphatasia with impaired intellectual development syndrome-1 (HPMRS1) is an autosomal recessive disorder characterized by impaired intellectual development, various neurologic abnormalities such as seizures and hypotonia, and hyperphosphatasia. Other features include facial dysmorphism and variable degrees of brachytelephalangy (summary by Krawitz et al., 2010). The disorder is caused by a defect in glycosylphosphatidylinositol biosynthesis; see GPIBD1 (610293). Genetic Heterogeneity of Hyperphosphatasia with Impaired Intellectual Development Syndrome See also HPMRS2 (614749), caused by mutation in the PIGO gene (614730) on chromosome 9p13; HPMRS3 (614207), caused by mutation in the PGAP2 gene (615187) on chromosome 11p15; HPMRS4 (615716), caused by mutation in the PGAP3 gene (611801) on chromosome 17q12; HPMRS5 (616025), caused by mutation in the PIGW gene (610275) on chromosome 17q12; and HPMRS6 (616809), caused by mutation in the PIGY gene (610662) on chromosome 4q22. Knaus et al. (2018) provided a review of the main clinical features of the different types of HPMRS, noting that some patients have a distinct pattern of facial anomalies that can be detected by computer-assisted comparison, particularly those with mutations in the PIGV and PGAP3 genes. Individuals with HPMRS have variable increased in alkaline phosphatase (AP) as well as variable decreases in GPI-linked proteins that can be detected by flow cytometry. However, there was no clear correlation between AP levels or GPI-linked protein abnormalities and degree of neurologic involvement, mutation class, or gene involved. Knaus et al. (2018) concluded that a distinction between HPMRS and MCAHS (see, e.g., 614080), which is also caused by mutation in genes involved in GPI biosynthesis, may be artificial and even inaccurate, and that all these disorders should be considered and classified under the more encompassing term of 'GPI biosynthesis defects' (GPIBD). [from OMIM]

MedGen UID:
1647044
Concept ID:
C4551502
Disease or Syndrome
16.

Lethal osteosclerotic bone dysplasia

Raine syndrome (RNS) is a neonatal osteosclerotic bone dysplasia of early and aggressive onset that usually results in death within the first few weeks of life, although there have been some reports of survival into childhood. Radiographic studies show a generalized increase in the density of all bones and a marked increase in the ossification of the skull. The increased ossification of the basal structures of the skull and facial bones underlies the characteristic facial features, which include narrow prominent forehead, proptosis, depressed nasal bridge, and midface hypoplasia. Periosteal bone formation is also characteristic of this disorder and differentiates it from osteopetrosis and other known lethal and nonlethal osteosclerotic bone dysplasias. The periosteal bone formation typically extends along the diaphysis of long bones adjacent to areas of cellular soft tissue (summary by Simpson et al., 2009). Some patients survive infancy (Simpson et al., 2009; Fradin et al., 2011). [from OMIM]

MedGen UID:
342416
Concept ID:
C1850106
Disease or Syndrome
17.

Hyperphosphatasia with intellectual disability syndrome 2

Hyperphosphatasia with impaired intellectual development syndrome-2 (HPMRS2) is an autosomal recessive disorder characterized by moderately to severely delayed psychomotor development, facial dysmorphism, brachytelephalangy, and increased serum alkaline phosphatase (hyperphosphatasia). Some patients may have additional features, such as cardiac septal defects or seizures (summary by Krawitz et al., 2012). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis. For a discussion of genetic heterogeneity of hyperphosphatasia with impaired intellectual development syndrome, see HPMRS1 (239300). For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293). [from OMIM]

MedGen UID:
766551
Concept ID:
C3553637
Disease or Syndrome
18.

Robinow-Sorauf syndrome

Robinow-Sorauf syndrome is a condition with features similar to those of Saethre-Chotzen syndrome, including craniosynostosis and broad or duplicated great toes. It was once considered a separate disorder, but was found to result from mutations in the same gene and is now thought to be a variant of Saethre-Chotzen syndrome.

The signs and symptoms of Saethre-Chotzen syndrome vary widely, even among affected individuals in the same family. This condition can cause mild changes in the hands and feet, such as partial fusion of the skin between the second and third fingers on each hand and a broad or duplicated first (big) toe. Delayed development and learning difficulties have been reported, although most people with this condition are of normal intelligence. Less common signs and symptoms of Saethre-Chotzen syndrome include short stature, abnormalities of the bones of the spine (the vertebra), hearing loss, and heart defects.

Most people with Saethre-Chotzen syndrome have prematurely fused skull bones along the coronal suture, the growth line that goes over the head from ear to ear. Other parts of the skull may be malformed as well. These changes can result in an abnormally shaped head, a high forehead, a low frontal hairline, droopy eyelids (ptosis), widely spaced eyes, and a broad nasal bridge. One side of the face may appear noticeably different from the other (facial asymmetry). Most people with Saethre-Chotzen syndrome also have small, rounded ears.

Saethre-Chotzen syndrome is a genetic condition characterized by the premature fusion of certain skull bones (craniosynostosis). This early fusion prevents the skull from growing normally and affects the shape of the head and face. [from MedlinePlus Genetics]

MedGen UID:
356703
Concept ID:
C1867146
Disease or Syndrome
19.

Au-Kline syndrome

Au-Kline syndrome is characterized by developmental delay and hypotonia with moderate-to-severe intellectual disability, and typical facial features that include long palpebral fissures, ptosis, shallow orbits, large and deeply grooved tongue, broad nose with a wide nasal bridge, and downturned mouth. There is frequently variable autonomic dysfunction (gastrointestinal dysmotility, high pain threshold, heat intolerance, recurrent fevers, abnormal sweating). Congenital heart disease, hydronephrosis, palate abnormalities, and oligodontia are also reported in the majority of affected individuals. Additional complications can include craniosynostosis, feeding difficulty, vision issues, osteopenia, and other skeletal anomalies. [from GeneReviews]

MedGen UID:
900671
Concept ID:
C4225274
Disease or Syndrome
20.

CHIME syndrome

CHIME syndrome, also known as Zunich neuroectodermal syndrome, is an extremely rare autosomal recessive multisystem disorder clinically characterized by colobomas, congenital heart defects, migratory ichthyosiform dermatosis, mental retardation, and ear anomalies (CHIME). Other clinical features include distinctive facial features, abnormal growth, genitourinary abnormalities, seizures, and feeding difficulties (summary by Ng et al., 2012). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis. For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293). [from OMIM]

MedGen UID:
341214
Concept ID:
C1848392
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...